
PROCEEDINGS OF THE 2002 IEEE WORKSHOP ON INFORMATION ASSURANCE 1

Detecting HTTP Tunneling Activities∗

Daniel J. Pack$,Member, IEEE , William Streilein+, Seth Webster+, and Robert Cunningham+

Abstract—In this paper we present a novel intrusion detection sys-
tem which makes use of behavior profiles to identify HyperText
Transfer Protocol (HTTP) tunneling activities. Behavior profiles
correspond to inherent attributes of application network sessions.
Our system evaluates network behaviors at two different levels: a
local multi-packet level and a session level. When suspicious behav-
ior is detected, a verification module performs a detailed analysis of
the corresponding session data. Currently, our system detects both
malicious and unauthorized HTTP tunneling activities. Our experi-
mental results show the effectiveness of our system and demonstrate
the validity of using packet features for anomaly detection.

Index Terms—HTTP Tunneling, Tunneling Detection, Be-

havior Profiles, Network Intrusion Detection

I. Introduction

RECENTLY, HTTP tunneling activities1 have received
an increased amount of attention from the Intrusion

Detection community. The primary reason for this is the
extensive use of HTTP in the Internet traffic and thus
the widespread potential for misuse of HTTP for tunnel-
ing data and control. current Intrusion Detection Systems
(IDSs), however, do not adequately detect HTTP tunnel-
ing activities. This lack of protection against misuses of
the HTTP is troublesome, given its pervasiveness and the
fact that it is allowed to flow freely through most firewalls.
For instance, we monitored the Internet traffic of a large
enterprise for a one week period and found that over 40%
of all incoming and over 90% of all outgoing data consisted
of HTTP traffic.

In this paper, we demonstrate the utility of packet features
to detect, identify, and verify abnormal HTTP web traffic.
When we use the term packet features, we mean attributes
extracted from a single packet or a set of packets such as
packet size, change of packet size, or the time between the
first and last packets in a connection. One advantage of
using packet features for the detection of HTTP tunneling
is that more effort is required on the part of the attacker
to manipulate these aspects of the traffic, in order to hide
unauthorized HTTP tunneling activities and attacks. An-
other important advantage of using packet features is that
these features can easily be extracted from packet head-
ers without having to parse large volumes of data asso-

∗This work was funded by AFIWC. Opinions, interpretations, con-
clusions, and recommendations are those of the authors and do not
necessarily represent the views of the agency or the US Air Force.

$Department of Electrical Engineering, U.S. Air Force Academy,
CO 80840, USA

+MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA
02420-9185

1 The HTTP tunneling is a method to establish a bi-directional
connection between two computers by encapsulating messages or at-
tacks with the HTTP protocol for the purpose of tunneling through
firewalls.

ciated with web traffic. Lightweight traffic parsing such
as this makes the proposed techniques appealing for real-
time applications. The extensive use of packet features
as described in our paper has not been found in existing
IDSs except in the work presented by Paxon and Zhang [1]
where they used the frequency of small packets to detect
the presence of interactive backdoors.

II. Background

To some extent most firewall and IDS developers are aware
of the potential for illegal HTTP tunneling. In fact, sim-
ple signature matching techniques for detecting them have
already been incorporated into some existing firewalls and
IDSs. However, these techniques have the following short-
comings.

For intrusion detections software running on dedicated ma-
chines, parsing all the packet data and then searching for
attack signatures is computationally expensive and thus,
not feasible for real-time applications. Without parsing
the data, however, simple string matching tends to pro-
duce high false alarm rates [2]. Furthermore, signature
based systems can not generalize attack patterns and fail
to recognize new types of tunneling activities [3]. A similar
problem exists with the firewalls. Stateless firewalls allow
all HTTP traffic to pass through them as long as allowed
port numbers and IP addresses are appropriately specified
in access control lists. Stateful application proxies provide
a bit more protection by performing limited protocol veri-
fication and sometimes removing Java and Javascript from
the data stream. These proxies cannot, however, perform
detailed analysis of each packet and still keep up with the
high data rates associated with web traffic. Unfortunately,
studying limited HTTP header information does not detect
tunneling activities; simple signature matching techniques
cause high false alarm rates, making the techniques im-
practical; and parsing all packet contents is computation-
ally too expensive. To further complicate this problem,
HTTP tunneling techniques are currently used in many
legitimate network activities such as streaming video and
audio [4], management of networks using remote procedure
calls encapsulated in CMIP and SNMP [5], and for passing
intrusion detection alerts [6]. For these common activities,
the HTTP is chosen because its traffic flows freely through
most firewalls.

These same HTTP tunneling techniques, however, also
provide opportunities to misuse an organization’s com-
puter network resources. By encapsulating their activi-
ties within HTTP traffic, attackers are able to interact
with and control machines that would otherwise be iso-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Detecting HTTP Tunneling Activities

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood
Street,Lexington,MA,02420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 PROCEEDINGS OF THE 2002 IEEE WORKSHOP ON INFORMATION ASSURANCE

Firewall

Session Session Session

process packets for current session

Libpcap and
PSplice

PSplice

HTTP Tunneling
Detector

Verification Module

Verification
Module Alert Admin

Intranet

Session Level

packet #

fn

f1

packet #

Internet

sliding window

Local Level
Analysis Module

Analysis Module

Fig. 1. System Architecture

lated from them behind a firewall. Legitimate users may
use HTTP tunneling without being blocked by a firewall
or detected by an IDS to access unauthorized software or
to access services from the internet in violation of their
organization’s policies or services from the Internet with-
out being blocked by a firewall or detected by an IDS.
Occasionally, these individuals may inadvertently bring in
or download malicious programs to an organization’s com-
puter network, but in most cases, such activities simply
waste available network bandwidth and lower productiv-
ity. A prominent example of such activity is to stream
non-work related video segments during periods of high
network usage.

Given the aforementioned status of current IDSs and fire-
walls regarding the HTTP tunneling, the objectives of our
work are (1) to introduce and demonstrate a novel ap-
proach of network intrusion detection by characterizing the
inherent features associated with packet level network traf-
fic for HTTP tunneling activities; (2) to illustrate the use
of behavior profiles to capture network events; and (3) to
present a hierarchical system that evaluates network be-
haviors at different resolutions, detecting and classifying
illegitimate and unauthorized HTTP tunneling activities.

III. System Description

The system, shown in Figure 1, contains two different
packet level processing modules and one additional tran-
script analysis module to detect, identify, and verify in-
teractive, scripted, and streaming sessions: the local level
analysis module searches for local features of individual
session packets, the session level analysis module examines
the average activities for an entire session up to the current
time, and the verification module extracts and considers
the contents of packets to verify the existence of HTTP
tunneling activities.

Libpcap: The Libpcap library routines provide an inter-
face through which applications can obtain raw packets
from the network. The HTTP tunneling detection pro-
gram uses its algorithms along with the PSplice routines
to process each packet, which we describe later in this sec-
tion. The Libpcap routines, therefore, remove the details
of communications with the network interface card, allow-
ing the tunneling detection program to focus on a high
level packet feature analysis.

Psplice: Psplice [7] is a library of C++ Classes and meth-
ods that handles all the complexities of associating pack-
ets into connections and keeping track of each connec-
tion’s status. It is composed of two separate components:
The packet parsing component of Psplice parses individ-
ual packets and provides ready access to packet internals
through the creation of packet objects. The connection
tracking component of Psplice matches incoming packets
to their respective connections and tracks the state of all
connections seen. The connection tracking component is
also able to piece the data from a connection’s packets to-
gether into a seamless transcript. The HTTP detection
system uses the Psplice library routines to keep statistics
on and extracted information from network connection ob-
jects.

Local Level Analysis Module: The local level analysis
module applies a sliding window to a set of packets to
search for abnormal local activities that match any of the
anomalous behavior profiles pre-generated using training
data. The sliding window size is defined by the user, and
it defines the number of packets considered at a time in
the local level analysis module. The features for abnormal
local behaviors include actual and differential packet sizes
between consecutive packets and the direction of data flow.

Session Level Analysis Module: While the local level
analysis module searches for distinctive local behaviors, the
session level analysis module evaluates global connection
behaviors by examining the running average of features
and changing feature patterns. The features used to detect
global anomalous activities include average size of packets,
direction of data flow, ratio of large to small packets, to-
tal amount of data transfer, and total number of packets
exchanged.

Verification Module: The verification module is only
invoked when a suspicious activity is detected by the local
analysis module or the session analysis module. Currently,
the verification process consists of parsing the transcript
of a connection and searching for keywords. If particular
keywords are found, the verification module informs a net-
work administrator. To verify an attack activity, we use a
set of 29 keywords while 11 keywords are used to identify
a stream session. We plan to interface the attack verifica-
tion process with the bottleneck verification algorithm [8],
a transcript analysis tool.

: 3

New Packet Update Connection
 Status

Add Packet Information

to Psplice Connection

Psplice

Callback

Perform Local
and Session

Analysis

Abnormal

Verify

Normal

Positive

Negative

Inform

Administrator

Yes
Update

Session

Transcript

No

Fig. 2. Flow-Chart depicting the process involved in detecting HTTP
tunneling activities.

Processing a Packet: Figure 2 shows the flow-chart of
the processing path a packet goes through within the detec-
tion system. When a new packet is collected by the tunnel
detection system, the detection system updates a connec-
tion object. If a packet does not belong to any existing
sessions, a new connection object is created. A connection
object contains information pertaining to the source and
the destination of the connection, such as IP addresses and
port numbers as well as the number of packets received by
the client and the server, packet size, arrival time, and
the contents of each packet. Each connection object also
contains information such as the running packet size aver-
age, the total number of bytes received so far, and updated
transcripts for both source and destination sites.

Once an appropriate connection object has been estab-
lished, the new packet features along with features derived
from the past n packets are analyzed by the local level
analysis module. At the same time, the session level anal-
ysis module examines the set of packets seen to this point
in the connection.

The verification module parses through the transcript and
searches for a set of preselected keywords. If the verifica-
tion module finds a tunneling activity, the appropriate in-
formation is sent to the system administrator. Otherwise,
the packet is sent to the next processing module. The next
processing module, shown as “Add Packet Information to
Psplice Connection” block in the figure, appends the cur-
rent packet information to an existing connection object
if it exists or starts a new connection object The corre-
sponding session transcript is updated only if necessary
conditions are met by the Psplice callback routine2.

2 We can’t simply add the packet information to a connection every
time a packet arrives, since packets arrive out of order.

IV. Behavior Profiles

Two important advantages exist for using behavior pro-
files in an IDS as the basis for detecting network intru-
sions: generality and extendibility. One of most desir-
able attributes of an IDS is the ability to generalize at-
tack patterns instead of matching specific signatures or
fingerprints. In place of specific keyword string patterns,
our system searches for general packet level behavior pat-
terns. For example, our system contains one behavior pro-
file to detect interactive sessions, another one to detect
scripted attacks, and third one to detect all streaming ses-
sions. That is, we do not have a list of different profiles
to detect streaming video, streaming voice, and streaming
music: one general behavior profile covers all three ac-
tivities. Furthermore, this single behavior profile is used
to detect streaming activities generated by four different
streaming software tools and protocols: MediaPlayer, Re-
alPlayer, QuickTime, and WinAmp. Experiments with op-
erational data show that the same stream behavior profile
allows the system to find streaming data produced by other
tools, such as the NSPlayer.

The second advantage of using behavior profiles is the abil-
ity to extend the scope of detection to other types of clan-
destine activities. Our system can be extended to detect
new abnormal behaviors by creating new behavior profiles.
We show how we generate such profiles using packet level
features shortly. Each behavior profile consists of a set
of programmable conditions. A profile developer describes
the local behavior and global behavior of an abnormal ac-
tivity using individual features such as the average packet
size, total number of packets, rate of packet size changes,
and relational attributes such as the packet ratio between
large and small packets and the disparity between the num-
ber of packets originated from a destination and the num-
ber of packets initiated from a source. The ability to define
new behavior profiles provides the flexibility for adminis-
trators to easily add the detection capability for new at-
tacks once its general packet behavior is identified.

We now describe the training data used to generate be-
havior profiles. For normal web traffic, we collected over
100 Mbytes actual web traffic data. The data is supple-
mented with over 2 Gbytes of simulated web traffic data
using the LARIAT [9] testbed. The data generated by
LARIAT accurately portrays actual web traffic and pro-
vide much needed volume and variety of normal web traffic
for training. For interactive attack sessions, seven differ-
ent attack scenarios using the GNU http tunneling pro-
gram [10] were carried out while capturing the associated
network traffic. The seven scenarios include probing direc-
tory structure, copying, modifying, inserting, and moving
files, and carrying out FTP sessions. To generate traffic
for scripted attacks, we captured the network traffic from
six attack scenarios generated using an HTTP tunneling
program developed at MIT-Lincoln Laboratory. These six
scenarios include the following activities: probing directory

4 PROCEEDINGS OF THE 2002 IEEE WORKSHOP ON INFORMATION ASSURANCE

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

Packets

P
ac

ke
t S

iz
e

(b
yt

e)

Data Size of Packets Received by Client

(a)

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

Packets

P
ac

ke
t S

iz
e

(b
yt

e)

Data Size of Packets Received by Server

(b)

0 500 1000 1500
0

200

400

600

800

1000

1200

Packet Size (byte)

N
um

be
r

of
 P

ac
ke

ts

Histogram of Packet Size Received by Client

(c)

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

Packet Size (byte)
N

um
be

r
of

 P
ac

ke
ts

Histogram of Packet Size Received by Server

(d)

Fig. 3. A sample of authors’ normal web traffic: frames (a) and (b) show the packet size received by the client and the server, respectively;
the histograms for the data in frames (a) and (b) are shown in frames (c) and (d), respectively.

structure, copying and moving files, removing processes,
and changing file access modes. Finally, for stream ses-
sions, we collected network traffic while using four differ-
ent streaming software clients: Realplayer, Mediaplayer,
Quicktime (Window version), and WinAmp. Using each
client we collected data while streaming music, audio, and
video.

Creating Behavior Profiles: Currently, a behavior pro-
file is generated by specifying the following seven packet
features: (1) packet size, (2) number of packets (duration,
sliding window size), (3) ratio between large and small
packets, (4) data directions, (5) average packet size, (6)
change of packet size pattern, and (7) size of total packets
received. From our experiments, we found that these fea-
tures are sufficient to distinguish abnormal HTTP session
from a normal one.

As an example, we first consider the case of normal web
traffic, shown in Figure 3. This data was produced by cap-
turing network traffic while the authors surfed the Internet.
A total of 3217 packets were received by a client with av-
erage of 9.218 packets per session, while a total of 3071
packets were received by a server with average of 8.799
packets per session. A total of 349 sessions are included in
the data shown in the figure. Average packet sizes, shown
in Figure 3 frames (a) and (b), are 745.964 bytes and 78.993
bytes, respectively. The histogram in Figure 3 frame (c)
shows the distribution of packet sizes for the normal web

traffic shown in Figure 3 at the client side, and frame (d)
shows the corresponding distribution at the server side.
Note that distribution peaks present at packet data size 0
and 1460 exist, and there is a wide spread of packet data
sizes shown in frame (c). From frame (d) we observe that
the data size of packets from the client to the server is rela-
tively small with the maximum packet data size under 700
bytes. These packet data sizes reflect the average amount
of data exchanged by clients and servers [11]. The exam-
ple shows that, on average, the client receives an order of
magnitude more data than the server. These characteris-
tic makes intuitive sense when we consider that most web
sessions consist of small data request packets from clients
and large data reply packets from servers.

To demonstrate how anomalous behavior profiles are cre-
ated, we compare normal web traffic data with data col-
lected from interactive attack sessions and stream sessions.
Figures 4 and 5 correspond to an interactive attack session
and a stream music session using the Microsoft Mediaplyer,
respectively. For each figure, frame (a) represents the size
of the packets received by the client during the session,
frame (b) represents the size of the packets received by a
server over the same session, frame (c) shows the histogram
of packet sizes corresponding to frame (a), and frame (d)
shows the histogram of packet sizes associated with frame
(b). Frames (e) and (f) of Figure 5 are the running aver-
ages of packet sizes at the client and at the server using
the data shown in frames (a) and (b) of the same figure.

: 5

0 20 40 60 80 100 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Packets

P
ac

ke
t D

at
a

S
iz

e
(b

yt
e)

Data Size of Packets Received by Client

(a)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Packets

P
ac

ke
t D

at
a

S
iz

e
(b

yt
e)

Data Size of Packets Received by Server

(b)

−60 −40 −20 0 20 40 60
0

20

40

60

80

100

120

Packet Size

N
um

be
r

of
 P

ac
ke

ts

Histogram of Packet Size Received by Client

(c)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Packet Size

N
um

be
r

of
 P

ac
ke

ts

Histogram of Packet Size Received by Server

(d)

Fig. 4. Interactive tunnel session: frames (a) and (b) show the packet size received by a client and a server; frames (c) and (d) represent
histograms using the data shown in frames (a) and (b), respectively

For the interactive attack session, a total of 111 packets
were received by the client and total 329 packets were re-
ceived by the server. Average packet sizes shown in Figure
4 frames (a) and (b) are 0 bytes and 2.088 bytes, respec-
tively. For the streaming session, 1357 packets were re-
ceived by the client and 834 packets were received by the
server. Average packet sizes shown in Figure 5 frames (a)
and (b) are 609.059 bytes and 0.5072 byte, respectively.

Using the data shown in the three figures, we now give
examples of how each component of a behavior profile is
specified.

(1) Packet Size: frame (a) in Figure 4 and Frame (b) in
figure 5 show a sequence of packets with zero size being
received at one of the traffic ends. While many zero packets
appear in the normal web traffic (Fig. 3 frames (a) and
(b)), such appearance only lasts for a “short” period of
time and does not constitute an entire session as shown
in the aforementioned figure frames. This feature alone,
of course, does not separate normal web traffic from the
tunneling traffic, but we can use it as one of the indicators.
Another example follows. The size of packets sent from the
client to the server for the interactive session indicates that
the packet size for most packets is small: these are packets
containing short commands. This feature is used to detect
interactive sessions.

(2) Number of Packets: The system measures a session

duration by the number of packets exchanged between a
client and a server. Empirical results show the script ses-
sion and normal web traffic sessions tend to have a small
number of packets exchanged per session while interactive
and stream sessions tend to have a large number of packets
exchanged.

(3) Ratio of Large and Small Packets: We can use this
feature to detect both an interactive session and a stream
session. In an interactive session, one communication end
usually sends small size packets with commands to be car-
ried out. By collecting the number of “small” packets and
comparing it to the total number of packets being sent,
our system can detect an interactive session. In a behavior
profile, a user can specify the “smallness” of a packet in
terms of the number of bytes a packet contains. Experi-
mental study also shows that when a stream is in progress,
a large number of packets with a similar size tends to be
sent to a client while a sequence of acknowledgement pack-
ets are sent in response to a server. The exact packet size
varies depending on the streaming software used, but we
can still exploit the pattern of same-sized packets to dis-
tinguish streaming session from normal web traffic.

(4) Direction: The general direction of network traffic is
another distinguishing characteristic of web activity. To
detect an interactive session initiated from inside a local
network, one can observe the number of packets being sent
to the Internet and compare it to the number of packets

6 PROCEEDINGS OF THE 2002 IEEE WORKSHOP ON INFORMATION ASSURANCE

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

Packets

P
ac

ke
t S

iz
e

(b
yt

e)

Data Size of Packets Recieved by Client

(a)

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

450

Packets

P
ac

ke
t S

iz
e

(b
yt

e)

Data Size of Packets Recieved by Server

(b)

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

Packet Size (bytes)

N
um

be
r

of
 P

ac
ke

ts

Histogram of Packet Size Received by Client

(c)

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

900

Packet Size (bytes)

N
um

be
r

of
 P

ac
ke

ts

Histogram of Packet Size Received by Server

(d)

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

Packets

N
um

be
r

of
 B

yt
es

Average Packet Size

(e)

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

Packets

N
um

be
r

of
 B

yt
es

Average Packet Size

(f)

Fig. 5. Music stream session: (a) size of packets received by the client, (b) size of packets received by the server, (c) histogram of data in
frame (a), and (d) histogram of data shown in frame (b).

received by the local machine. In a normal web session,
a client asks for a webpage or a file from a server and
the server then sends a relatively large amount of data
to the client, while the client acknowledges the receipt of
the data. Thus, the total number of packets received by
the client is much larger than the total number of packets
being sent. On the other hand, for a tunneled interactive
session, a client tends to send many small packets over a
“long” period of time to a server and receives relatively
small sized packets when compared to normal web traffic
sessions3. Figure 4 shows the initial session where this
activity occurs. Frame (b) of this figure shows the packets

3 A similar pattern is observed when a client posts a message to
a server in a normal web session, but the difference is the session
duration for an interactive session is significantly longer.

being sent to the destination where we can see the small
packet size. Also observe that the client is receiving a
long sequence of acknowledgement packets (frame (a) of
the same figure) from the server, which is abnormal.

(5) Average Packet Size: This feature in conjunction with
the session length can give added evidence as to whether a
stream session or an interactive session is in progress. As
shown in Figure 5 frames (e) and (f), observing the average
packet size over time shows that the average packet size
received by a client in a stream session will reach a non-zero
constant value while the average packet size being received
by a server reaches almost zero. For an interactive session,
the average size of the packets sent from a server to a client
decreases as a session continues. This characteristic can be

: 7

Type Outside IP Outside Org Num
S 207.239.241.41 winmed.westwindmedia.com 6
S 198.88.9.80 mail.alumrpi.edu 1
S 208.184.44.20 netshowc.mpo.intervu.net 1
S 64.89.104.44 abowms02.obmnet.com 7
S 63.250.208.18 wmcontent01.broadcast.com 1
S 207.46.184.73 msn.expedia.com 1
S 216.34.209.10 www.cj.com 1
S 140.177.203.60 www.wolfram.com 1
S 159.142.1.210 arpet.gov 4
Chat 63.160.183.240 chat.yahoo.com 1
OM 64.58.76.99 mail.yahoo.com 5
OM 205.188.160.121 aol.com 2

TABLE I

Summary of HTTP tunneling activities

seen in Figure 4 frame (b).

(6) Change of Packet Size Pattern: In a stream session,
a significant change in packet size over five consecutive
packets is a common event. Thus, the presence of this
event indicates a streaming session is in progress versus
a normal web sessions in which a large number of static
pictures or data being transferred.

(7) Size of Total Packets Received: The amount of data
being received also plays an important role for detecting
abnormal activities. In normal web traffic, a client asks for
information and a server provides the requested informa-
tion. When we compare the amount of data transferred
from a client to a server and vice versa, we find that a
client receives a larger amount of data than was sent. A
client that sends more data than it receives is an indication
of tunneling activity.

The seven features are chosen to describe behavior profiles
after analyzing the training data. Further study is neces-
say to verify whether the selected features are sufficient to
detect arbitrary HTTP tunnecting activities.

Interactive Tunneling Session Behavior Profile: Our
system detects interactive sessions by detecting the follow-
ing behaviors: (a) the size of packets being sent by a client
(originator) is relatively small; (b) while receiving small
packets, a server sends a sequence of long acknowledgement
packets in response; and (c) the number of small packets
compared to the total number of packets being sent to a
server is large; (d) the duration of a session is long.

Scripted Tunneling Session Behavior Profile: To de-
tect scripted sessions the system looks for the following
behaviors: (a) a short session with a relatively large data
transfer; (b) a sequence of acknowledgement packets from
a server; and (c) the amount of data received by a client
compared to the amount of data received by a server.

Stream Session Behavior Profile: Compared to the
normal web traffic, streaming audio, music, or video has
the following distinctive behaviors: (a) the session dura-
tion is significantly longer; (b) the number of packets with
a same size dominates the total number of packets in a
session; (c) a client sends a sustained sequence of acknowl-
edgement packets to a server; (d) a significant change in
packet data size exists among neighboring packets in be-
tween two sequences of identical sized packets; (e) a con-
stant packet size not corresponding to the maximum al-
lowable packet size is observed; (f) the size of packets to
the server is smaller; (g) the running average of the packet
size to the server decreases over the duration of a session;
(h) the number of packets received by a client is always
greater than the number of packets received by a server.

V. Results and Discussion

In this section we present the experimental results using
real operational web traffic of a large organization. We
used 1Gbyte of network traffic collected by sniffing a net-
work with a 2Mbits/sec data rate. Out of the 1Gbyte of
data, just over 60% was web traffic. When we fed the web
traffic to our system, it detected the activities shown in
Table 1.

In the first column of the table, “S” indicates activities
where audio, video, music, and other data are streamed
to a computer of the organization and the OM stands for
interactive mail activities using mailservers outside of the
organization. A total of 38 different alerts were generated
while processing the data (1 hour of net traffic representing
communication between the Internet and the organization
during 11 to 12 AM on a weekday). Out of the 38 alerts,
14 were from streaming music, 1 was from streaming radio
broadcast, 8 were from interactive mail related activities, 1
was from chatting session, 7 were from streaming large data
files, and 7 were false alarms. The sample experimental

8 PROCEEDINGS OF THE 2002 IEEE WORKSHOP ON INFORMATION ASSURANCE

result data cannot be used to measure the effectiveness of
the system but shows that a number of tunneling activities
are taking place in the organization. No attack session was
detected.

VI. Conclusion

In this paper, we presented a novel system to detect HTTP
tunneling activities. In particular, the system uses user-
defined behavior profiles based on packet flow directions,
packet sizes, large and small packet ratios, average packet
size, change of packet size pattern, connection duration,
and size of total transfer of packets. Behavior profiles are
used to detect interactive and scripted sessions as well as
streaming data over the HTTP protocol. The system con-
sists of three levels of analysis: the local level analysis mod-
ule processes a limited number of packets within a sliding
window to extract local behaviors; the session level anal-
ysis module processes all packets received for a particular
session to capture global behaviors; and the verification
module analyzes session transcripts if either the local level
module or the session level analysis module detects suspi-
cious activities. Application of actual operational data of
a large organization shows the effectiveness and validity of
the proposed system approach. We are currently working
to expand the system to detect different attacks and to fuse
the verification module with a transcript analysis system
to perform a detailed analysis of suspicious transcripts.

References

[1] Y. Zhang and V. Paxon, “Detecting backdoors,” Proceedings of
2000 USENIX Security Symposium, August 2000.

[2] A. Valdes and K. Skinner, “Adaptive, model-based monitoring
for cyber attack detection,” Proceedings of the 2000 Recent Ad-
vances in Intrusion Detection Conference, Toulouse, France,
October 2000.

[3] P. Porras and A. Valdes, “Live traffic analysis of TCP/IP
gateways,” Proceedings of the 1998 Internet Society’s Network
and Distributed Systems Security Symposium, Athens, Greece,
March 1998.

[4] “Vividon focuses on video streaming,” http://boston.bcentral.
com/boston/stories/2000/10/23/newscolumn2.html.

[5] “Using HTTP as an RPC transport,” http://msdn.microsoft.
com/library/psdk/rpc/ pv-http 7h4k.htm.

[6] “ICEcap manager,” http://www.networkice.com/products/icecap
manager.html.

[7] S. Webster, “PSplice,” Personal Communication.
[8] R. Cunningham and R. Lippmann, “Host-based bottleneck ver-

ification efficiently detects novel computer attacks,” Proceedings
of IEEE Military Communications Conference, 1999.

[9] L. Rossey, R. Cunningham, D. Fred, J. Rabek, R. Lippmann,
J. Haines, and M. Zissman, “LARIAT: Lincoln adaptable real-
time information assurance testbed,” Submitted for publication.

[10] “HTTP tunnel,” http://www.nocrew.org/software/httptunnel.html.
[11] D. Gregg, W. Blackert, D. Heinbuch, and D. Furnanage, “Ana-

lyzing denial of service attacks using theory and modeling and
simulation,” Proceedings of the 2001 IEEE Workshop on In-
formation Assurance and Security, pp. 205–211, United States
Military Academy, West Point, NY, June 2001.

